The present research aims to support team coordination learning in hybrid human-robot teams through alternate roles, information distribution, and imperfect robot control.

In our game, *Mixed Reality Maze*, two players communicate to drive an imperfectly controlled Sphero robot through a virtual world projected into the real world. The robot operator must make the robot dodge virtual obstacles and collect virtual collectibles. The map commander must tell the operator where to avoid invisible obstacles.

To engage hybrid-human robot team learning, we aim to support:

alternate roles
- based on [Toups et al. 2011], we need alternate roles that are interdependent to engage players in coordination
 - the map commander observes and communicates
 - the robot operator drives the robot

information distribution
- based on [Toups et al. 2011], we develop information distribution among roles
 - the map commander has detail on objects invisible to the robot operator

imperfect robot control
- new in the present research is the use of imperfect robot control to teach players to handle uncertainty
 - the Sphero robot used in the game needs space to rotate and start and stop
 - players must account for these challenges in play

Future work will investigate the value of these design choices, and connect with the disaster response and robot operator communities.